Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86.147
Filtrar
1.
Cell Mol Biol Lett ; 29(1): 51, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600465

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) play essential roles in the tumorigenesis of gastric cancer. However, the influence of lncRNA methylation on gastric cancer stem cells (GCSCs) remains unclear. METHODS: The N6-methyladenosine (m6A) levels of lncRNAs in gastric cancer stem cells were detected by methylated RNA immunoprecipitation sequencing (MeRIP-seq), and the results were validated by MeRIP-quantitative polymerase chain reaction (qPCR). Specific sites of m6A modification on lncRNAs were detected by single-base elongation- and ligation-based qPCR amplification (SELECT). By constructing and transfecting the plasmid expressing methyltransferase-like 3 (METTL3) fused with catalytically inactivated Cas13 (dCas13b) and guide RNA targeting specific methylation sites of lncRNAs, we obtained gastric cancer stem cells with site-specific methylation of lncRNAs. Reverse transcription (RT)-qPCR and Western blot were used for detecting the stemness of treated gastric cancer stem cells. RESULTS: The site-specific methylation of PSMA3-AS1 and MIR22HG suppressed apoptosis and promoted stemness of GCSCs. LncRNA methylation enhanced the stability of PSMA3-AS1 and MIR22HG to suppress apoptosis of GCSCs via the PSMA3-AS1-miR-411-3p- or MIR22HG-miR-24-3p-SERTAD1 axis. Simultaneously, the methylated lncRNAs promoted the interaction between PSMA3-AS1 and the EEF1A1 protein or MIR22HG and the LRPPRC protein, stabilizing the proteins and leading to the suppression of apoptosis. The in vivo data revealed that the methylated PSMA3-AS1 and MIR22HG triggered tumorigenesis of GCSCs. CONCLUSIONS: Our study revealed the requirement for site-specific methylation of lncRNAs in the tumorigenesis of GCSCs, contributing novel insights into cancer development.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , ARN Guía de Sistemas CRISPR-Cas , Carcinogénesis/genética , Apoptosis/genética , Células Madre Neoplásicas/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Metiltransferasas/genética
2.
BMC Biotechnol ; 24(1): 18, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600497

RESUMEN

BACKGROUND: Nanotechnology-based drug delivery systems have received much attention over the past decade. In the present study, we synthesized Methyl Urolithin A-loaded solid lipid nanoparticles decorated with the folic acid-linked chitosan layer called MuSCF-NPs and investigated their effects on cancer cells. METHODS: MuSCF-NPs were prepared using a high-pressure homogenization method and characterized using FTIR, FESEM, DLS, and zeta potential methods. Drug encapsulation was assessed by spectrophotometry and its cytotoxic effect on various cancer cells (MDA-MB231, MCF-7, PANC, AGS, and HepG2) by the MTT method. Antioxidant activity was assessed by the ABTS and DPPH methods, followed by expression of genes involved in oxidative stress and apoptosis by qPCR and flow cytometry. RESULTS: The results showed the formation of monodisperse and stable round nanoparticles with a size of 84.8 nm. The drug loading efficiency in MuSCF-NPs was reported to be 88.6%. MuSCF-NPs exhibited selective cytotoxicity against MDA-MB231 cells (IC50 = 40 µg/mL). Molecular analysis showed a significant increase in the expression of Caspases 3, 8, and 9, indicating that apoptosis was occurring in the treated cells. Moreover, flow cytometry results showed that the treated cells were arrested in his SubG1 phase, confirming the pro-apoptotic effect of the nanoparticles. The results indicate a high antioxidant effect of the nanoparticles with IC50 values ​​of 45 µg/mL and 1500 µg/mL against ABTS and DPPH, respectively. The reduction of catalase gene expression confirmed the pro-oxidant effect of nanoparticles in cancer cells treated at concentrations of 20 and 40 µg/mL. CONCLUSIONS: Therefore, our findings suggest that the MuSCF-NPs are suitable candidates, especially for breast cancer preclinical studies.


Asunto(s)
Benzotiazoles , Quitosano , Cumarinas , Nanopartículas , Ácidos Sulfónicos , Ácido Fólico/química , Nanopartículas/química , Antioxidantes/farmacología , Lípidos , Portadores de Fármacos/química
3.
Mol Biol Rep ; 51(1): 567, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656394

RESUMEN

BACKGROUND: Metabolic plasticity gives cancer cells the ability to shift between signaling pathways to facilitate their growth and survival. This study investigates the role of glucose deprivation in the presence and absence of beta-hydroxybutyrate (BHB) in growth, death, oxidative stress and the stemness features of lung cancer cells. METHODS AND RESULTS: A549 cells were exposed to various glucose conditions, both with and without beta-hydroxybutyrate (BHB), to evaluate their effects on apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS) levels using flow cytometry, and the expression of CD133, CD44, SOX-9, and ß-Catenin through Quantitative PCR. The activity of superoxide dismutase, glutathione peroxidase, and malondialdehyde was assessed using colorimetric assays. Treatment with therapeutic doses of BHB triggered apoptosis in A549 cells, particularly in cells adapted to glucose deprivation. The elevated ROS levels, combined with reduced levels of SOD and GPx, indicate that oxidative stress contributes to the cell arrest induced by BHB. Notably, BHB treatment under glucose-restricted conditions notably decreased CD133 expression, suggesting a potential inhibition of cell survival through the downregulation of CD133 levels. Additionally, the simultaneous decrease in mitochondrial membrane potential and increase in ROS levels indicate the potential for creating oxidative stress conditions to impede tumor cell growth in such environmental settings. CONCLUSION: The induced cell death, oxidative stress and mitochondria impairment beside attenuated levels of cancer stem cell markers following BHB administration emphasize on the distinctive role of metabolic plasticity of cancer cells and propose possible therapeutic approaches to control cancer cell growth through metabolic fuels.


Asunto(s)
Ácido 3-Hidroxibutírico , Apoptosis , Glucosa , Neoplasias Pulmonares , Potencial de la Membrana Mitocondrial , Mitocondrias , Estrés Oxidativo , Especies Reactivas de Oxígeno , Humanos , Estrés Oxidativo/efectos de los fármacos , Glucosa/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Células A549 , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ácido 3-Hidroxibutírico/farmacología , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Antígeno AC133/metabolismo , Antígeno AC133/genética
4.
Angew Chem Int Ed Engl ; : e202402028, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656658

RESUMEN

A planar conjugated ligand functionalized with bithiophene and its Ru(II), Os(II), and Ir(III) complexes have been constructed as single-molecule platform for synergistic photodynamic, photothermal, and chemotherapy. The complexes have significant two-photon absorption at 808 nm and remarkable singlet oxygen and superoxide anion production in aqueous solution and cells when exposed to 808 nm infrared irradiation. The most potent Ru(II) complex Ru7 enters tumor cells via the rare macropinocytosis, locates in both nuclei and mitochondria, and regulates DNA-related chemotherapeutic mechanisms intranuclearly including DNA topoisomerase and RNA polymerase inhibition and their synergistic effects with photoactivated apoptosis, ferroptosis and DNA cleavage. Ru7 exhibits high efficacy in vivo for malignant melanoma and cisplatin-resistant non-small cell lung cancer tumors, with a 100% survival rate of mice, low toxicity to normal cells and low residual rate. Such an infrared two-photon activatable metal complex may contribute to a new generation of single-molecule-based integrated diagnosis and treatment platform to address drug resistance in clinical practice and phototherapy for large, deeply located solid tumors.

5.
Chem Biol Drug Des ; 103(2): e14467, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38661582

RESUMEN

Paclitaxel (PTX) is one of the first-line chemotherapeutic agents for treating breast cancer. However, PTX resistance remains a major hurdle in breast cancer therapy. Crocin, the main chemical constituent of saffron, shows anti-cancer activity against various types of cancer. However, the effect of crocin on the resistance of PTX in breast cancer is still unknown. CCK-8 and TUNEL assays were employed to detect cell viability and apoptosis, respectively. The targets of crocin were predicted using HERB database and the targets associated with breast cancer were acquired using GEPIA database. The Venn diagram was utilized to identify the common targets between crocin and breast cancer. Baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5) expression was detected by qRT-PCR and western blot analysis. The correlation between BIRC5 expression and survival was analyzed by Kaplan-Meier plotter and PrognoScan databases. Our data suggested that crocin aggravated PTX-induced decrease of viability and increase of apoptosis in MCF-7 and MCF-7/PTX cells. BIRC5 was identified as the target of crocin against breast cancer. Crocin inhibited BIRC5 expression in MCF-7 and MCF-7/PTX cells. BIRC5 is overexpressed in breast cancer tissues, as well as PTX-sensitive and PTX-resistant breast cancer cells. BIRC5 expression is related to the poor survival of patients with breast cancer. Depletion of BIRC5 strengthened PTX-induced viability reduction and promotion of apoptosis in MCF-7 and MCF-7/PTX cells. Moreover, BIRC5 overexpression reversed the inhibitory effect of crocin on PTX resistance in breast cancer cells. In conclusion, crocin enhanced the sensitivity of PTX in breast cancer cells partially through inhibiting BIRC5 expression.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Carotenoides , Paclitaxel , Survivin , Humanos , Paclitaxel/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Survivin/metabolismo , Survivin/genética , Carotenoides/farmacología , Carotenoides/química , Células MCF-7 , Apoptosis/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral
6.
Mol Reprod Dev ; 91(4): e23742, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38644727

RESUMEN

Preeclampsia (PE) is a common pregnancy complication with a high mortality rate. Abnormally activated endoplasmic reticulum stress (ERS) is believed to be responsible for the destruction of key placental cells-trophoblasts. Phenylbutyric acid (4-PBA), an ERS inhibitor, is involved in regulating the development of ERS-related diseases. At present, how 4-PBA affects trophoblasts and its mechanisms is still unclear. In this study, PE cell models were established by stimulating HTR-8/SVneo cells with hypoxia. To verify the underlying mechanisms of 4-PBA on PE, CCT020312, an activator of PERK, was also used. The results showed that 4-PBA restored hypoxia-induced trophoblast viability, inhibited HIF-1α protein expression, inflammation, and PERK/ATF-4/CHOP pathway. Hoechst 33342 staining and flow cytometry results confirmed that 4-PBA decreased hypoxia-induced apoptosis in trophoblasts. The results of the JC-1 analysis and apoptosis initiation enzyme activity assay also demonstrated that 4-PBA inhibited apoptosis related to the mitochondrial pathway. Furthermore, by detecting autophagy in trophoblasts, an increased number of autophagic vesicles, damaged mitochondria, enhanced dansylcadaverine fluorescence, enhanced levels of autophagy proteins Beclin-1, LC3II, and decreased p62 were seen in hypoxia-stimulated cells. These changes were reversed by 4-PBA. Furthermore, it was observed that CCT020312 reversed the effects of 4-PBA on the viability, apoptosis, and autophagosome number of hypoxia-induced trophoblasts. In summary, 4-PBA reduces autophagy and apoptosis via the PERK/ATF-4/CHOP pathway and mitochondrial pathway, thereby restoring the viability of hypoxic trophoblasts. These findings provide a solid evidence base for the use of 4-PBA in PE treatment and guide a new direction for improving the outcomes of patients with PE.


Asunto(s)
Factor de Transcripción Activador 4 , Apoptosis , Autofagia , Hipoxia de la Célula , Fenilbutiratos , Preeclampsia , Factor de Transcripción CHOP , Trofoblastos , eIF-2 Quinasa , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo , Trofoblastos/patología , Femenino , Humanos , Preeclampsia/metabolismo , Preeclampsia/tratamiento farmacológico , Preeclampsia/patología , Autofagia/efectos de los fármacos , Factor de Transcripción CHOP/metabolismo , Apoptosis/efectos de los fármacos , Embarazo , Fenilbutiratos/farmacología , eIF-2 Quinasa/metabolismo , Factor de Transcripción Activador 4/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Línea Celular
7.
Fish Shellfish Immunol ; : 109575, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663463

RESUMEN

Avamectin (AVM), a macrolide antibiotic, is widely used in fisheries, agriculture, and animal husbandry, however, its irrational use poses a great danger to aquatic organisms. Ferulic acid (FA) is a natural chemical found in the cell walls of plants. It absorbs free radicals from the surrounding environment and acts as an antioxidant. However, the protective effect of FA against kidney injury caused by AVM has not been demonstrated. In this study, 60 carp were divided into the control group, AVM group (2.404 µg/L), FA+AVM group and FA group (400 mg/kg). Pathological examination, quantitative real-time PCR (qPCR), reactive oxygen species (ROS) and western blot were used to evaluate the preventive effect of FA on renal tissue injury after AVM exposure. Histological findings indicated that FA significantly reduced the swelling and infiltration of inflammatory cells in the kidney tissues of carp triggered by AVM. Dihydroethidium (DHE) fluorescent probe assay showed that FA inhibited the accumulation of kidney ROS. Biochemical results showed that FA significantly increased glutathione (GSH) content, total antioxidant capacity (T-AOC) and catalase (CAT) activity, and decreased intracellular malondialdehyde (MDA) content. In addition, western blot results revealed that the protein expression levels of Nrf2 and p-NF-κBp65 in the carp kidney were inhibited by AVM, but reversed by the FA. The qPCR results exhibited that FA significantly increased the mRNA levels of tgf-ß1 and il-10, while significantly down-regulated the gene expression levels of tnf-α, il-6 and il-1ß. These data suggest that FA can reduce oxidative stress and renal tissue inflammation induced by AVM. At the same time, FA inhibited the apoptosis of renal cells induced by AVM by decreasing the transcription level and protein expression level of Bax, and increasing the transcription level and protein expression level of Bcl2, PI3K and AKT. This study provides preliminary evidence for the theory that FA reduces the level of oxidative stress, inflammation response and kidney tissue damage caused by apoptosis in carp, providing a theoretical basis for the prevention and treatment of the AVM.

8.
Mol Cell Endocrinol ; : 112250, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663485

RESUMEN

The most common form of hypercortisolism is iatrogenic Cushing's syndrome. Lipodystrophy and metabolic disorders can result from the use of exogenous glucocorticoids (GC). Adipocytes play an important role in the production of circulating exosomal microRNAs, and knockdown of Dicer promotes lipodystrophy. The aim of this study is to investigate the effect of GCs on epididymal fat and to assess their influence on circulating microRNAs associated with fat turnover. The data indicate that despite the reduction in adipocyte volume due to increased lipolysis and apoptosis, there is no difference in tissue mass, suggesting that epididymal fat pad, related to animal size, is not affected by GC treatment. Although high concentrations of GC have no direct effect on epididymal microRNA-150-5p expression, GC can induce epididymal adipocyte uptake of microRNA-150-5p, which regulates transcription factor Ppar gamma during adipocyte maturation. In addition, GC treatment increased lipolysis and decreased glucose-derived lipid and glycerol incorporation. In conclusion, the similar control and GC epididymal fat mass results from increased dense fibrogenic tissue and decreased adipocyte volume induced by the lipolytic effect of GC. These findings demonstrate the complexity of epididymal fat. They also highlight how this disease alters fat distribution. This study is the first in a series published by our laboratory showing the detailed mechanism of adipocyte turnover in this disease.

9.
Eur J Pharmacol ; : 176608, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663542

RESUMEN

Prodiginines have been studied extensively for their anticancer activity, however, the majority of the research has focused on prodigiosin. In this study, cycloheptylprodigiosin (S-1) is extracted from marine bacterium Spartinivicinus ruber MCCC 1K03745T, and its anticancer property was investigated. It exhibits remarkable cytotoxicity against a panel of human lung cancer cell lines, with the IC50 values ranging from 84.89 nM to 661.2 nM. After 6 hours of treatment, S-1 gradually accumulates on mitochondria and lysosomes. While lower doses of S-1 induce cell cycle arrest, treatment with higher doses results in cell death in apoptotic independent manner in both NCI-H1299 and NCI-H460 cell lines. Interestingly, treatment with S-1 leads to the accumulation of LC3B-II via pathways that vary among different cell lines. In addition to its role as an autophagy inhibitor, S-1 also promotes autophagy initiation as demonstrated by the increment of EGFP fragment in the EGFP-LC3 degradation assay, however, inhibition of autophagy does not rescue cells from death induced by S-1. Mechanistically, S-1 impairs autophagic flux through disrupting acidic lysosomal pH and blocking the maturation of cathepsin D. Moreover, treatment with S-1 enhanced secretion of both pro- and mature forms of cathepsin D, coincident with disintegration of trans-Golgi network. Interestingly, S-1 does not induce ferroptosis, pyroptosis or necroptosis in NCI-H1299 cells. However, treatment of NCI-H460 cells with S-1 induces methuosis, which can be suppressed by Rac1 inhibitor EHT 1864. Our data demonstrate that S-1 is an effective anticancer agent with potential therapeutic application.

10.
Int J Biol Macromol ; : 131839, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663699

RESUMEN

Streptococcus suis (S. suis) is a significant zoonotic microorganism that causes a severe illness in both pigs and humans and is characterized by severe meningitis and septicemia. Suilysin (SLY), which is secreted by S. suis, plays a crucial role as a virulence factor in the disease. To date, the interaction between SLY and host cells is not fully understood. In this study, we identified the interacting proteins between SLY and human brain microvascular endothelial cells (HBMECs) using the TurboID-mediated proximity labeling method. 251 unique proteins were identified in TurboID-SLY treated group, of which six plasma membrane proteins including ARF6, GRK6, EPB41L5, DSC1, TJP2, and PNN were identified. We found that the proteins capable of interacting with SLY are ARF6 and PNN. Subsequent investigations revealed that ARF6 substantially increased the invasive ability of S. suis in HBMECs. Furthermore, ARF6 promoted SLY-induced the activation of p38 MAPK signaling pathway in HBMECs. Moreover, ARF6 promoted the apoptosis in HBMECs through the activation of p38 MAPK signaling pathway induced by SLY. Finally, we confirmed that ARF6 could increase the virulence of SLY in C57BL/6 mice. These findings offer valuable insights that contribute to a deeper understanding of the pathogenic mechanism of SLY.

11.
Transpl Immunol ; : 102044, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663757

RESUMEN

BACKGROUND: Glutamine is crucial for the activation and efficacy of T cells, and may play a role in regulating the immune environment. This study aimed to investigate the potential role of glutamine in the activation and proliferation of induced regulatory T cells (iTregs). METHODS: CD4+CD45RA+T cells were sorted from peripheral blood mononuclear cells and cultured to analyze iTreg differentiation. Glutamine was then added to the culture system to evaluate the effects of glutamine on iTregs by determining oxidative phosphorylation (OXPHOS), apoptosis, and cytokine secretion. Additionally, a humanized murine graft-versus-host disease (GVHD) model was constructed to confirm the efficacy of glutamine-treated iTregs in vivo. RESULTS: After being cultured in vitro, glutamine significantly enhanced the levels of Foxp3, CTLA-4, CD39, CD69, IL-10, TGF-ß, and Ki67 (CTLA-4, IL-10, TGF-ß are immunosuppressive markers of iTregs) compared with that of the control iTregs (P < 0.05). Furthermore, the growth curve showed that the proliferative ability of glutamine-treated iTregs was better than that of the control iTregs (P < 0.01). Compared with the control iTregs, glutamine supplementation significantly increased oxygen consumption rates and ATP production (P < 0.05), significantly downregulated Annexin V and Caspase 3, and upregulated BCL2 (P < 0.05). However, GPNA significantly reversed the effects of glutamine (P < 0.05). Finally, a xeno-GVHD mouse model was successfully established to confirm that glutamine-treated iTregs increased the mice survival rate, delayed weight loss, and alleviated colon injury. CONCLUSION: Glutamine supplementation can improve the activity and immunosuppressive action of iTregs, and the possible mechanisms by which this occurs are related to cell proliferation, apoptosis, and OXPHOS.

12.
Psychogeriatrics ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664198

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a prevailing neurodegenerative disorder increasingly affecting the elderly population. The involvement of microRNAs (miRNAs) in PD has been confirmed. We sought to explore the molecular mechanism of miR-20a-5p in PD. METHODS: Lipopolysaccharide (LPS)-induced BV2 cell model and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP-HCl)-induced PD mouse model were established. miR-20a-5p, inducible nitric oxide synthase (iNOS), interleukin (IL)-6, tumour necrosis factor (TNF)-α, transforming growth factor (TGF)-ß1, and IL-10 expression in BV2 cells was examined by reverse transcription - quantitative polymerase chain reaction. Cell viability was assessed by MTT assay. The apoptotic rate and levels of Bcl-2, Bax, cleaved caspase-3, and signal transducer and activator of transmission (STAT)3 were examined by flow cytometry and Western blot. Bioinformatics software predicted the potential binding sites of miR-20a-5p and STAT3. Dual-luciferase experiment verified the binding relationship. Iba1-positive and tyrosine hydroxylase (TH)-positive cell numbers in substantia nigra pars compacta were detected by immunohistochemistry. The effect of miR-20a-5p on motor function in MPTP-induced PD mice was detected by Rota-rod test, Pole test, Traction test and Beam-crossing task. RESULTS: miR-20a-5p was under-expressed in LPS-induced BV2 cells. Overexpression of miR-20a-5p increased the viability of LPS-induced BV2 cells and reduced apoptosis rates. Moreover, overexpression of miR-20a-5p reduced cleaved caspase-3, Bax, iNOS, IL-6, and TNF-α and increased Bcl-2 and TGF-ß1, and IL-10. miR-20a-5p targeted STAT3. STAT3 overexpression partially reversed miR-20a-5p overexpression-mediated effects on LPS-induced BV2 cell viability, apoptosis, and inflammatory responses. miR-20a-5p overexpression inhibited MPTP-induced STAT3 and α-synuclein levels, microglia activation, and inflammatory response, and reduced the loss of TH-positive cells in mice. miR-20a-5p overexpression ameliorated MPTP-induced dyskinesia in PD model mice. CONCLUSION: miR-20a-5p alleviates neuronal damage and suppresses inflammation by targeting STAT3 in PD.

13.
Sci Rep ; 14(1): 9540, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664447

RESUMEN

Triple-negative breast cancer (TNBC) is a metastatic disease and a formidable treatment challenge as it does not respond to existing therapies. Epigenetic regulators play a crucial role in the progression and metastasis by modulating the expression of anti-apoptotic, pro-apoptotic markers and related miRNAs in TNBC cells. We have investigated the anti-TNBC potential of dietary flavonoid 'Apigenin' and its combination with Vorinostat on MDA-MB-231 cells. At Apigenin generated ROS, inhibited cell migration, arrested the cell cycle at subG0/G1 phases, and induced apoptotic-mediated cell death. Apigenin reduced the expression of the class-I HDACs at the transcriptomic and proteomic levels. In the immunoblotting study, Apigenin has upregulated pro-apoptotic markers and downregulated anti-apoptotic proteins. Apigenin inhibited the enzymatic activity of HDAC/DNMT and increased HAT activity. Apigenin has manifested its effect on miRNA expression by upregulating the tumor-suppressor miR-200b and downregulation oncomiR-21. Combination study reduced the growth of TNBC cells synergistically by modulating the expression of epigenetic and apoptotic regulators. Molecular docking and MD simulations explored the mechanism of catalytic inhibition of HDAC1 and HDAC3 and supported the in-vitro studies. The overall studies demonstrated an anti-TNBC potential of Apigenin and may help to design an effective strategy to treat metastatic phenotype of TNBC.


Asunto(s)
Apigenina , Apoptosis , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , MicroARNs , Neoplasias de la Mama Triple Negativas , Vorinostat , Apigenina/farmacología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Apoptosis/efectos de los fármacos , Vorinostat/farmacología , Epigénesis Genética/efectos de los fármacos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Femenino , Movimiento Celular/efectos de los fármacos , Simulación del Acoplamiento Molecular , Proliferación Celular/efectos de los fármacos
14.
Sci Rep ; 14(1): 9545, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664493

RESUMEN

An essential research area for scientists is the development of high-performing, inexpensive, non-toxic antibacterial materials that prevent the transfer of bacteria. In this study, pure Bi2WO6 and Bi2WO6/MWCNTs nanocomposite were prepared by hydrothermal method. A series of characterization results by using XRD FTIR, Raman, FESEM, TEM, and EDS analyses, reveal the formation of orthorhombic nanoflakes Bi2WO6 by the addition of NaOH and pH adjustment to 7. Compared to pure Bi2WO6, the Bi2WO6/MWCNTs nanocomposite exhibited that CNTs are efficiently embedded into the structure of Bi2WO6 which results in charge transfer between metal ion electrons and the conduction or valence band of Bi2WO6 and MWCNTs and result in shifting to longer wavelength as shown in UV-visible and PL. The results confirmed that MWCNTs are stuck to the surface of the microflowers, and some of them embedded inside the Bi2WO6 nanoflakes without affecting the structure of Bi2WO6 nanoflakes as demonstrated by TEM. In addition, Pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite were tested against P. mirabilis and S. mutans., confirming the effect of addition MWCNTs materials had better antibacterial activity in opposition to both bacterial strains than pure Bi2WO6. Besides, pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite tested for cytotoxicity against lung MTT test on Hep-G2 liver cancer cells, and flow-cytometry. Results indicated that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have significant anti-cancer efficacy against Hep-G2 cells in vitro. In addition, the findings demonstrated that Bi2WO6 and Bi2WO6/MWCNTs triggered cell death via increasing ROS. Based on these findings, it appears that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have the potential to be developed as nanotherapeutics for the treatment of bacterial infections, and liver cancer.


Asunto(s)
Antibacterianos , Antineoplásicos , Bismuto , Nanocompuestos , Compuestos de Tungsteno , Nanocompuestos/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Bismuto/química , Bismuto/farmacología , Compuestos de Tungsteno/química , Compuestos de Tungsteno/farmacología , Nanotubos de Carbono/química , Pruebas de Sensibilidad Microbiana , Supervivencia Celular/efectos de los fármacos , Células Hep G2
15.
Mol Med ; 30(1): 55, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664616

RESUMEN

BACKGROUND: Osteoarthritis (OA), the most common joint disease, is linked with chondrocyte apoptosis and extracellular matrix (ECM) degradation. Charged multivesicular body protein 5 (CHMP5), a member of the multivesicular body, has been reported to serve as an anti-apoptotic protein to participate in leukemia development. However, the effects of CHMP5 on apoptosis and ECM degradation in OA remain unclear. METHODS: In this study, quantitative proteomics was performed to analyze differential proteins between normal and OA patient articular cartilages. The OA mouse model was constructed by the destabilization of the medial meniscus (DMM). In vitro, interleukin-1 beta (IL-1ß) was used to induce OA in human chondrocytes. CHMP5 overexpression and silencing vectors were created using an adenovirus system. The effects of CHMP5 on IL-1ß-induced chondrocyte apoptosis were investigated by CCK-8, flow cytometry, and western blot. The effects on ECM degradation were examined by western blot and immunofluorescence. The potential mechanism was explored by western blot and Co-IP assays. RESULTS: Downregulated CHMP5 was identified by proteomics in OA patient cartilages, which was verified in human and mouse articular cartilages. CHMP5 overexpression repressed cell apoptosis and ECM degradation in OA chondrocytes. However, silencing CHMP5 exacerbated OA chondrocyte apoptosis and ECM degradation. Furthermore, we found that the protective effect of CHMP5 against OA was involved in nuclear factor kappa B (NF-κB) signaling pathway. CONCLUSIONS: This study demonstrated that CHMP5 repressed IL-1ß-induced chondrocyte apoptosis and ECM degradation and blocked NF-κB activation. It was shown that CHMP5 might be a novel potential therapeutic target for OA in the future.


Asunto(s)
Apoptosis , Condrocitos , Matriz Extracelular , Hialuronoglucosaminidasa , FN-kappa B , Osteoartritis , Transducción de Señal , Condrocitos/metabolismo , Condrocitos/patología , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/genética , Matriz Extracelular/metabolismo , Humanos , Animales , FN-kappa B/metabolismo , Ratones , Masculino , Modelos Animales de Enfermedad , Cartílago Articular/metabolismo , Cartílago Articular/patología , Interleucina-1beta/metabolismo , Proteómica/métodos
16.
BMC Med Genomics ; 17(1): 105, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664735

RESUMEN

BACKGROUND: Research on the fatty acid metabolism related gene SLC27A2 is currently mainly focused on solid tumors, and its mechanism of action in hematological tumors has not been reported. METHOD: This study aims to explore the pathological and immune mechanisms of the fatty acid metabolism related gene SLC27A2 in hematological tumors and verify its functional role in hematological tumors through cell experiments to improve treatment decisions and clinical outcomes of hematological tumors. RESULT: This study identified the fatty acid metabolism related gene SLC27A2 as a common differentially expressed gene between DLBCL and AML. Immune microenvironment analysis showed that SLC27A2 was significantly positively correlated with T cell CD4 + , T cell CD8 + , endothelial cells, macrophages, and NK cells in DLBCL. In AML, there is a significant negative correlation between SLC27A2 and B cells, T cell CD8 + , and macrophages. SLC27A2 participates in the immune process of hematological tumors through T cell CD8 + and macrophages. The GESA results indicate that high expression of SLC27A2 is mainly involved in the fatty acid pathway, immune pathway, and cell cycle pathway of DLBCL. The low expression of SLC27A2 is mainly involved in the immune pathway of AML. Therefore, SLC27A2 is mainly involved in the pathological mechanisms of hematological tumors through immune pathways, and cell experiments have also confirmed that SLC27A2 is involved in the regulation of DLBCL cells. CONCLUSION: In summary, our research results comprehensively report for the first time the mechanism of action of SLC27A2 in the immune microenvironment of DLBCL and AML, and for the first time verify the cycle and apoptotic effects of the fatty acid related gene SLC27A2 in DLBCL cells through cell experiments. Research can help improve the treatment of AML and DLBCL patients.


Asunto(s)
Ciclo Celular , Linfoma de Células B Grandes Difuso , Microambiente Tumoral , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/inmunología , Linfoma de Células B Grandes Difuso/patología , Microambiente Tumoral/inmunología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/patología , Línea Celular Tumoral , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Ácidos Grasos/metabolismo
17.
Discov Med ; 36(183): 836-841, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38665031

RESUMEN

BACKGROUND: Over 80% of lung cancer cases constitute non-small cell lung cancer (NSCLC), making it the most prevalent type of lung cancer globally and the leading cause of cancer-related deaths. The treatment of NSCLC patients with gefitinib has demonstrated promising initial efficacy. However, the underlying mechanism remains unclear. This study aims to investigate how gefitinib affects the mitogen-activated protein kinase kinase (MEK)/extracellular regulated protein kinases (ERK) signaling pathway-mediated growth and death of NSCLC cells. METHODS: In this study, the NSCLC cell line A549 was cultured in vitro and divided into a control group and a gefitinib group. The viability of the A549 cells was assessed using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Flow cytometry was employed to detect apoptosis in A549 cells, and the expression of glutamate dehydrogenase (GDH1) mRNA in these cells was determined using real-time quantitative PCR (RT-PCR). Western blotting was utilized to evaluate the protein expression levels of key components in the MEK/ERK signaling pathway, including phospho-MEK1/2, MEK1/2, phospho-ERK1/2, and ERK1/2. Additionally, intracellular glutamine content in A549 cells was measured using a colorimetric method. RESULTS: In contrast to the control group, the proliferation of A549 cells, the transcription level of glutamate dehydrogenase (GDH1), the intracellular glutamine content, and the protein expression levels of phospho-MEK1/2 and phospho-ERK1/2 were significantly lower in the gefitinib group. Moreover, apoptosis markedly increased. CONCLUSIONS: Gefitinib expedites apoptosis and diminishes proliferation in the NSCLC cell line A549 by downregulating the epidermal growth factor receptor (EGFR)/MEK/ERK signaling pathway. This effect is accomplished by fostering the expression of GDH1 to augment glutaminolysis in A549 cells.


Asunto(s)
Apoptosis , Carcinoma de Pulmón de Células no Pequeñas , Gefitinib , Glutamina , Neoplasias Pulmonares , Sistema de Señalización de MAP Quinasas , Humanos , Gefitinib/farmacología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Apoptosis/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Células A549 , Glutamina/metabolismo , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Glutamato Deshidrogenasa/metabolismo , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral
18.
Anim Biosci ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38665071

RESUMEN

Objective: The objective of this study was to investigate the effects of prolactin (PRL) on the proliferation and apoptosis of ovine ovarian granulosa cells (GCs) and the secretion of estrogen (E2) and progesterone (P4), as well as to explore the effects of PRL on related genes and proteins. Methods: We isolated ovarian GCs from 1-year-old small-tail Han sheep and identified PRL receptor (PRLR) on ovaries and follicle stimulating hormone receptor (FSHR) on ovarian GCs, respectively, using immunohistochemistry. PRL (0, 0.05, 0.50, 5.00 µg/mL) were added to GCs in vitro along with FSH, cell proliferation was measured by Cell Counting Kit-8 (CCK-8) and apoptosis by flow cytometry. The measurement of E2 and P4 content by ELISA after 24h and 48h. The expression of functional genes and proteins was identified by RT-qPCR and Western-blot after 24h. Results: PRLR was expressed in both follicular GCs and corpus luteum, whereas FSHR was expressed specifically. The proliferative activity was lower on day 1 while higher on day 4 and day 5. The apoptosis rate of GCs in the 0.05 µg/mL group was significantly higher than that in the control group after treatment with PRL for 24 h (p<0.05). Compared with the control group, the secretion of E2 in GCs was reduced significantly (p<0.05) in PRL treatment for 24h and 48h, while the secretion of P4 was significantly increased (p<0.05). The mRNA expression levels of PRLR, FSHR, LHR, CYP11A1, HSD3B7 and STAR were significantly higher than those in the control group (p<0.01), and the relative abundance of BCL2 in all PRL group were increased after PRL treatment. Conclusion: PRL promoted the proliferation of GCs and supraphysiological concentrations inhibited apoptosis caused by down-regulation of BAX and up-regulation of BCL2. PRL inhibited E2 by down-regulating CYP19A1 and promoted P4 by up-regulating CYP11A1, STAR and HSD3B7.

19.
J Hum Reprod Sci ; 17(1): 42-49, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665610

RESUMEN

Background: The loss of two or more pregnancies is considered recurrent miscarriage (RM). One of the causes of this pathology is the occurrence of mutations both in pleiotropic and pathway-specific regulators and in structural genes. The simplest type of such mutations is single nucleotide polymorphisms. Aims: The aim of the study is to study the relationship between gene polymorphisms of anti- and pro-inflammatory cytokines - interferon-gamma (T874A), interleukin (IL1B) (C3954T), IL6 (G572C) and IL10 (G1082A); placental function, apoptosis and angiogenesis - apolipoprotein C-III (APOC3) (G5163C), kinase insert domain receptor (A1719T, G1192A), P53 (Arg72Pro) and signal transducer and activator of transcription 3 (STAT3) (C1697G) with the development of idiopathic RM (iRM) in the Kazakh population. Settings and Design: This was a case-control study. Materials and Methods: Molecular genetic studies were performed by TaqMan using a single site-specific amplification and real-time genotyping method in 302 women with iRM and 300 with normal reproduction. DNA isolation from the biomaterial was carried out using kits containing binding magnetic particles. Both samples were analysed for alleles and genotypes for the studied polymorphisms. Statistical Analysis Used: For statistical data processing, Pearson's criterion, confidence interval (CI) and probability value were taken into account. Results: It was found that the carriage of unfavourable genotypes (G/C, C/C) for the G5163C polymorphism of the APOC3 gene increases the risk of developing iRM by three times (odds ratio = 3.0; 95% CI = 2.24-4.07). Other studied polymorphisms in the genes of ILs, interferon, P53 proapoptotic protein, kinase domain receptor and STAT3 transcription activator were not associated with RM. Conclusion: Significant associations of APOC3 gene genotypes with the development of iRM in the Kazakh population indicate the involvement of the placental system, which is realised by vascularisation defects and defective embryo implantation and leads to early pregnancy termination.

20.
Turk J Biol ; 48(1): 24-34, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665783

RESUMEN

Background/aim: Cancer is a complex disease that involves both genetic and epigenetic factors. While emerging evidence clearly suggests that changes in epitranscriptomics play a crucial role in cancer pathogenesis, a comprehensive understanding of the writers, erasers, and readers of epitranscriptomic processes, particularly under apoptotic conditions remains lacking. The aim of this study was to uncover the changes in the expression of m6A RNA modifiers under apoptotic conditions across various cancer cell lines. Materials and methods: Initially, we quantified the abundance of m6A RNA modifiers in cervical (HeLa and ME180), breast (MCF7 and MDA-MB-231), lung (A549 and H1299), and colon (Caco-2 and HCT116) cancer cell lines using qPCR. Subsequently, we induced apoptosis using cisplatin and tumor necrosis factor-alpha (TNF-α) to activate intrinsic and extrinsic pathways, respectively, and assessed apoptosis rates via flow cytometry. Further, we examined the transcript abundance of m6A RNA modifiers under apoptotic conditions in cervical, breast, and lung cancer cell lines using qPCR. Results: Overall, treatment with cisplatin increased the abundance of m6A modifiers, whereas TNF-α treatment decreased their expression in cervical, breast, and lung cancer cell lines. Specifically, cisplatin-induced apoptosis, but not TNF-α-mediated apoptosis, resulted in decreased abundance of METTL14 and FTO transcripts. Additionally, cisplatin treatment drastically reduced the abundance of IGF2BP2 and IGF2BP3 readers. Conclusion: These results suggest that the differential response of cancer cells to apoptotic inducers may be partially attributed to the expression of m6A RNA modifiers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...